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ABSTRACT 1 

 2 
The paper presents a heteroskedastic dynamic discrete choice (HDDC) model for tour-based 3 

mode choices modelling with an empirical investigation of university students’ daily mode 4 
choices in Toronto. The reality of connected trips and resulting constrained mode choices are 5 
captured through the HDDC framework that is suitable for fitting in an activity-based travel 6 
demand modelling system. Data from a web-based travel survey of the students of four 7 
universities in Toronto are used. The empirical model highlights the importance of capturing the 8 

dynamics in tour-based mode choices modelling. The dynamic model reveals that students’ 9 
sensitivity to cost vary by trips of the day, while their sensitivity to travel time remains stable. 10 
Results of this investigation have policy implications and the proposed methodology has 11 
applications in activity-based travel demand modelling. 12 

 13 
 14 

 15 

16 
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 1 

1. INTRODUCTION 2 

 3 
From daily travel demand modelling perspective, two types of approaches to mode choice 4 
modelling exist: trip–based and tour-based. Trip-based mode choice models have been 5 
traditionally used in Four-Stage Models (FSM). However, the need for tour-based mode choice 6 
model is obvious for an Activity-Based Model (ABM) of travel demands. A tour refers to a chain 7 
of trips that commence from a location and return to the same location at the end (Bowman et al. 8 

1998). A tour-based approach for an ABM is necessary to recognize the dynamics in mode 9 
choice behaviour in a tour through the consideration of inter-dependence among various aspects 10 
of mode choices (Ho and Mulley 2013).    11 
 12 

In the ABM framework, the recognitions of the time-space constraints shaped by time budget 13 
and transportation system performances is the fundamental tenet (Habib et al. 2017). However, 14 

this basic tenet is often compromised to fit in the mode choice models. Most ABMs use some 15 
sort of a hybrid mix of rules and econometric approaches for modelling activity-travel schedules. 16 

Mode choice models are parachuted in to apply in the steps subsequent to the schedule formation 17 
(Arentze and Timmermans, 2004; Miller et. al., 2005). Thus, many ABM systems rely on either a 18 
trip-based or a simplified tour-based mode choice models that in many cases completely 19 

overlooks the dynamics of mode choice behaviour.  20 
 21 

Efforts of developing tour-based mode choice models for the ABMs are rare in literature. In 22 
some cases, where tour-based mode choice modelling is done explicitly, the mode choice model 23 
follows the activity scheduling model. This approach considers the predicted schedule as an 24 

external input to the mode choice model, which overlooks the endogenous relationship between 25 
activity scheduling and travel mode choices (Miller et. al., 2005). In fact, there are insufficient 26 

number of modelling techniques available for using in a tour-based mode choice context that can 27 
accommodate the dynamics of mode choices in a tour. This is a serious gap in ABM practices.  28 

 29 
To contribute in filling this gap, this paper proposes a deductive tour-based mode choice 30 
modelling structure that uses the classical Dynamic Discrete Choice Modelling (DDCM) 31 

approach. The deductive DDCM approach uses a sequential applications of discrete choice 32 
models with explicit consideration of state dependence and expectation feedback in the mode 33 

choices in a tour. The proposed model is developed as a part of the recently proposed dynamic 34 
activity-based model, named CUSTOM, which uses the same approach of modelling daily 35 
activity scheduling under continuous time and space constraints (Habib et al 2017). For empirical 36 

application, the proposed DDCM model is applied for a tour-based mode choice model of post-37 
secondary students in Toronto.   38 
 39 
The paper is organized as follows. The next section presents a brief literature review on mode 40 

choice modelling approaches used by various activity-based models to explain the context of 41 
current investigation. This section is followed by the section explaining the dynamic discrete 42 
choice model formulation; data for empirical investigation and results of the empirical modelling. 43 
The paper concludes with a summary of key findings and set of recommendations for future 44 
studies. 45 
 46 
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 1 

2. LITERATURE REVIEW   2 
 3 

Activity-based models (ABMs) have traditionally been using rule-based approach to develop 4 
activity-travel scheduling where mode choice model is accommodated in various ways (Habib 5 
2011). Some noteworthy rule-based ABMs include: AMOS (Pendyala et al. 1997), PCATS 6 
(Kitamura and Fujii 1998), ALBATROSS (Arentze and Timmermans 2004), TASHA (Miller and 7 

Roorda 2005), FAMOS (Pendyala et. al. 2005), ADAPTS (Auld and Mohammadian 2012). 8 
Mode choice modelling components of these modelling systems are often shaped by the 9 
approach used for the activity scheduling process models. In AMOS, only trip based commuting 10 
mode choices are used, overlooking the tour aspects in the mode choice modelling (Pendyala et 11 
al. 1997). PCATS uses a two-tier nested logit model for joint destination and mode choices of a 12 

trip and considers one model specification for all trips (Kitamura and Fujii 1998). In 13 
ALBATROSS, it is assumed that there are no mode changes between the trips in a tour. As such, 14 
one mode for the full tour is assumed in ALBATROSS (Arentze and Timmermans 2004). Such 15 

unimodal tour mode choices is a generalization of trip-based model.  16 

 17 
The tour-based mode choice component of TASHA uses deterministic rules for household level 18 

car and task allocations considering the activity schedules of the household members as 19 
exogenous inputs. For the choice model formulation of this tour-based mode choice model, an 20 
un-orthodox probit approach is used, where random utilities of scheduled activity episodes are 21 

independently simulated to derive the tour-level mode choice utility functions (Miller et al. 22 
2005). The result is a non-closed form mode choice probability that may suffer from model 23 

identification issue if the intra-household constraints are not properly specified. Moreover, the 24 
use of deterministic rules poses concerns over prediction validity when those rules may not 25 

remain valid. In FAMOS, discrete trip-based mode and destination choice are modelled jointly 26 
for each activity and does not consider a tour-based approach of mode choice modelling 27 

(Pendyala et al. 2005). ADAPTS incorporated a mode plan component in its generation-28 
scheduling model framework. However, the mode choice model is estimated as trip-base model 29 
and then added into this system (Auld and Mohammadian 2012).   30 

 31 
As opposed to rule-based approach, there are some ABMs that use fully econometric approach of 32 

activity-scheduling. However, the mode choice model is often accommodated in the same way it 33 
is done in the rule-based models. Such models include model by Bowman and Ben-Akiva (2001), 34 
CEMDAP (Bhat et al. 2004), etc. Bowman and Ben-Akiva (2001) uses a discrete choice 35 
modelling system to model activity scheduling, and mode choice is considered endogenous to 36 
that system. They use a tour-based approach of mode choice modelling, but only mode-specific 37 

tours are specified. This unimodal tour approach does not allow combinations of different modes 38 
within a single tour. For example, if someone dropped-off a household member at a transit 39 

station, and then the household member took transit to the end station, and then returned to the 40 
origin using a taxi, this model will not model these mode choices jointly. 41 
 42 
The econometric ABM, CEMDAP considers a tour-based approach for mode choice modelling 43 
(Bhat et al. 2004). It allows to model the tour-level mode choices, but the tour patterns are 44 

defined in simplified ways. Such as home-work-home, and home or work based sub tours, etc. 45 
Vovsha, Bradley, and Davidson (2004, 2005 and 2010) developed an activity-based model 46 
named CT-RAMP, which uses a hybrid mix of econometric models and rules for activity 47 
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scheduling. It uses a nested logit model to model tour-based mode choices, where trip-level 1 
mode choice models define the lower level and that feeds into the upper level of tour-based mode 2 
combinations. This approach explicitly considers inter-dependence of the mode choice between 3 

consecutive trips in a tour, but the tour-based mode choice modelling structure becomes fixed as 4 
it is estimated. Flexibility of the tour-based mode choice model can be an issue for general 5 
applicability of the model. 6 
 7 
Besides these, many operational travel demand models use tour-based mode choice approach. 8 

However, in most of the cases tour-based mode choice is defined as the choice of a particular 9 
mode for a sequence of trips in a tour. That said, combination of modes in a single tour is not 10 
considered (Bowman 1998, Freedman et al. 2006, Cambridge Systematics 2002). The limitation 11 
of such approach is that single mode-specific tour-based approach is nothing different from a 12 

trip-based mode choice model. Cirillo & Axhausen (2002) proposed such a trip-based model by 13 
using the mixed logit approach to capture the implicit correlations between modes choices of a 14 
sequences of trips made in a day. However, it is still overlooks the dynamic aspects of tour-based 15 

mode choices. 16 
  17 

In reality, the choices of travel modes for the day’s activity-travel schedules are dynamic in 18 
nature. So, a dynamic discrete choice model (DDCM) is promising in this case. As proposed by 19 

Heckman (1978 and 1981), a DDCM can be formulated in a way that the choice of a mode for 20 
any specific trip of a day considers state dependence, and expectations of next trips’ mode 21 
choice. To our knowledge, nobody investigated the application of a DDCM for modelling mode 22 

choices of an activity-based travel demand model. In fact, application of DDCM in 23 
transportation is very rare with few exception of modelling social interactions (Kuwano et al 24 

2011) and car ownership choice modelling (Cirillo et al 2015). 25 
 26 

This paper proposed a noble approach of using DDCM for the tour-based mode choice modelling. 27 
The objective is to develop a flexible modelling system that can capture the dynamic nature of 28 

tour formations and allow investigating multimodal behaviour within a single tour. The proposed 29 
model is developed for the mode choice modelling component of a recently proposed activity-30 
based travel demand modelling system, CUSTOM, which uses a dynamic econometric approach 31 

of activity scheduling (Habib et al 2017). The next section presents the econometric formulation 32 
of the proposed DDCM for tour-based mode choice modelling. 33 

 34 

3. ECONOMETRIC MODEL  35 
 36 

According to Heckman’s general formulation of DDCM the total utility of an individual (i) 37 

of an alternative (m) at time (t) can be written as follows:  38 
 39 

   (1) 40 

= is the parameter vector 41 

=attributes associated to modes  42 

= this term captures state dependence.  43 

=time dependent parameter which captures the effect of the event occurred t seconds  44 

 if person  choose a certain  mode at time t and zero otherwise 45 
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 is coefficient to capture the cumulative effect  1 

 is random utility component with variance  2 

 3 
Based on Heckman’s formulation, Swait et al. (2004) proposed the following dynamic 4 
generalized extreme value (DGEV) formulation by applying the concept of RUM: 5 

   (2) 6 

Utility equation for individual (i), mode (m), and time (t)  7 

G= Homogenous GEV function 8 

= time dependent parameter which captures the effect past utilities  9 

= capture state dependence at time r 10 

=scale parameter at time t  11 

 12 

Based on equation (2) and recursive Bellman’s equation we can write the following meta-utility 13 
equation in the context of tour-based mode choice modelling as follows (Bellman 2013, Cirillo 14 
& Xu 2011): 15 
 16 

 17 
Here is the total utility and is the utility of the current state. The discount factor 18 

(  captures the influence of future expectation (  which value should be in 19 

between 0 to 1. is mainly the summation of log-sum of all future modes.  20 

 21 

If we assume the error term (  as an independent and identically distributed (IID) Gumbel 22 

distribution, the conditional choice probability can be written as: 23 
 24 

 25 
Here,  is the discount factor which is also the coefficient of the function of future dependence.  26 

 27 
Finally, the mode choice probability of a two trips tour becomes: 28 

 29 
 30 

In equation (5),  is the scale parameter. If everyone has the option of m alternatives and if the 31 

total number of an individual is N, the log likelihood function can be written as follows: 32 
 33 

 34 
Where,  if person  choose mode  and zero otherwise.  35 

  36 
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The model illustrated in equation (5) can capture the current utility and the future expectation 1 

(  of the utility at the same time. This future expectation is weighted by a weighting factor, 2 

which indicates the future dependency on a set of subsequent mode choices. The following decay 3 

function is used to define the future expectation which can capture heteroskedasticity:  4 
 5 

  6 

 7 
Per equation (7), we can capture the mode specific constant. The variables (Z) and parameter ( 8 

should be specified carefully, since it affects the elasticity computation. The proposed DDCM 9 

has a closed form and can be estimated by using standard estimation technique. In this research, 10 

we programmed the likelihood function in the GAUSS programing language and used maximum 11 
likelihood estimation technique (Aptech, 2017).    12 

 13 

4. DATA FOR EMPIRICAL INVESTIGATION 14 
 15 

Data from a web-based travel survey conducted among the post-secondary students in Toronto 16 

are used for this study (StudentMoveTO 2016). This survey collected personal, household, 17 
socioeconomic, and travel schedule related information (Hasnine et al. 2017). The survey data 18 
were collected in Fall 2015. In the dataset, in any random day over 80% of students made 2- and 19 

3-trips tours. The rests of them made either single trip or more than 3 trips tours. Empirical 20 
investigation of this paper uses the subset of those who made 2- and 3-trip tours in a weekday for 21 

modelling tour-based mode choice model. 2-trips tour subset of data includes 2358 students. 3-22 
trips tour subset of data includes 1977 students.  23 
 24 

These datasets are also fused with land use data and transportation Level of Service (LOS) data. 25 

The LOS data (e.g., in-vehicle travel time, access time, and waiting time for transit, auto cost and 26 
time) are generated using a traffic assignment models (which is used by the planning 27 
departments of the City of Toronto for their planning investigations) by using the regional travel 28 

survey data of the Greater Toronto area. The summary statistics of the datasets are shown in 29 
Table 1.  30 

 31 
In terms of age category, it is found that 68% of the students who make two-trip-tours and 32 
56.80% of students who make three-trip-tour are aged between 18 to 22. In terms of the gender, 33 
it is found that 61.83% of female students make a two-trip-tour and 56.80% of female students 34 

make a three-trip-tour. Preliminary analysis also shows that around 57.38% (two-trip-tour) and 35 
61.96% (three-trip-tour) of students have a driving license.  Around 50% of all students in the 36 

final datasets own a bike. Around 37.04% of the students who make two-trips-tours and around 37 
33.22% students who perform three-trip-tours have a Presto card (smart transit fare payment 38 
system). 39 
 40 
TABLE 1. Summary Statistics of the selected variables 41 
 Tour with two trips (2358 

records) 

Tour with three trips (1977 

records) 

Continuous Variables Mean Standard 

Deviation 

Mean Standard 

Deviation 

Auto drive cost ($) 2.932 2.299 1.119 1.607 

Auto drive in vehicle travel time (minutes) 19.940 14.550 7.962 9.740 



8 
 

Transit fare ($) 3.082 2.430 1.314 1.684 

In vehicle travel time (minutes) 46.156 30.215 17.135 24.600 

Transit wait time 6.948 4.492 3.153 4.319 

Walk access time to transit (minutes) 18.647 12.125 16.575 13.564 

Drive access time to transit (minutes) 1.492 0.970 NA NA 

Bike access time to transit (minutes) 4.972 3.233 NA NA 

Trip distance (km) 20.251 15.033 5.533 7.647 

Household Size 3.826 1.444 3.397 1.388 

Number of dependent children in the household 0.325 0.805 0.273 0.767 

Number of cars in the household 1.393 0.985 0.928 1.062 

Categorical Variables Percentage Percentage 

Age Age less than 18 2.417 1.416 

Age between 18 to 22 68.236 56.803 

Age between 23 to 25 14.546 17.248 

Age more than 25 14.801 24.532 

 

Gender 

Female 61.832 67.577 

Male 37.235 31.765 

Not-reported 0.933 0.658 

 

Mobility Tool 

Students who have driving 

license 

57.380 61.963 

Students who have bike 50.976 47.747 

Students who own transit 

passes 

49.279 37.481 

Students who own Presto 

card 

37.043 33.215 

Mode 

combination 

Mode share: two-trip-tour Mode 

combination 

Mode share: three-trip-

tour 

AD-AD 6.573 AD-AD-AD 15.276 

AP-AP 4.368 AP-AP-AP 7.334 

AP-T 2.120 AP-T-T 1.568 

AP-KR 0.297 T-AP-AP 1.062 

AP-W 0.085 T-T-T 17.198 

T-AP 1.951 T-T-AP 1.872 

T-T 61.323 T-T-W 4.350 

T-KR 1.442 T-W-T 11.634 

T-W 0.297 T-W-W 1.416 

PR-PR 4.071 W-W-W 27.618 

KR-AP 0.382 W-W-T 1.012 

KR-T 3.902 W-T-T 3.085 

KR-KR 5.513 B-B-B 6.576 

W-T 0.297 AD=auto drive, AP=auto passenger, T=local transit with walk 

access 

PR=park and ride, KR=kiss and ride, BR= bike and ride,  

W=walk, B=bike 

W-W 3.520 

BR-BR 0.382 

B-B 3.478  

 1 
For two-trip-tours, it is found that transit-transit mode pair is the most dominant one (61.32%). 2 

For the three-trip-tour, it is found that the complete walk tour (walk-walk-walk) has the highest 3 
mode share (27.61%), and the second highest mode share is found when a student makes the 4 
complete tour by transit (17.20%).  5 
 6 
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In terms of trip modes, a total of eight possible modes are identified: auto drive, auto passenger, 1 
local transit with walk access, park and ride, kiss and ride, bike and ride, and walk and bike. A 2 
total of seventeen mode combinations are found for two-trip tours and for three trips a total of 3 

thirteen mode combinations are found for three trips tours. The auto drive is considered available 4 
if the student owns a driver’s license and the student’s household owns a car. The auto passenger 5 
is considered available if the household owns a car. Walking is considered available if the 6 
travelling distance is less than 3 km. The bike is available if the student has a bike and the 7 
commuting distance is less than 10 km. For the second and third trip, conditional choice sets are 8 

defined. Auto drive is considered only available if the auto drive mode is chosen in the first trip 9 
and the car should be returned at the end of the tour. If the first trip is made by auto passenger or 10 
local transit with walk access mode, four modes are considered available in the subsequent trips, 11 
such as auto passenger, local transit, kiss and ride, and walk. If the home to school trip is kiss 12 

and ride, three modes are considered available to the respondent in the subsequent trips, such as 13 
auto passenger, local transit, and kiss and ride. Average kiss and ride distance if longer than 3 km 14 
and that makes walking as infeasible for kiss and ride leg the tour. If the first mode is walking, 15 

then local transit with walk access and walk are available for the second trip.  16 
 17 

5. EMPIRICAL RESULTS 18 
 19 

Figure 1 presents the modelling approach used in this paper. The final datasets are divided into 20 
two parts: 80% randomly selected records are used for model estimation and the rest of the 20% 21 
samples are used for model validation of the estimated models.  Table 2 and 3 present the results 22 

of the heteroskedastic dynamic discrete choice (HDDC) tour-based mode choice for two trips 23 
and three trips.  Personal, household, level of service, and land use attributes are used in both 24 

models. The final specifications of the models are selected by considering the parameters with 25 
sign and a 95% confidence limit of their estimated parameter values (t-statistics 1.64 or higher). 26 

However, some parameters with lower t-value are retained as they have expected sign and 27 
provide behavioural explanation.  28 

 29 
For both models, the goodness-of-fit (Rho-squared value) is measured against the null model as 30 
well as the constant only model. The two-trip-tour model’s goodness-of-fit against the null 31 

model is 0.51 and the goodness-of-fit against constant only model is 0.12. The three-trip-tour 32 
model’s goodness-of-fit against the null model is 0.40 and the goodness-of-fit against the 33 

constant only model is 0.104. Having considering the complexity of these two models it can be 34 
said that both models show reasonably good fit.  35 
 36 
A total of 16 alternative specific constants (ASC) are estimated for the two-trip-tour model and 37 

12 ASCs are estimated in the three-trip-models. Most of the ASC’s in both models are highly 38 
statistically significant. For both models, all LOS parameters are showing expected signs. 39 
Depending on the paired-t test result we have decided which cases it is required to use generic 40 

parameters for the same variable in different trips and in which cases it is required to estimate 41 
trip specific parameters for the same variable in different trips.  42 
 43 
In the two-trip-tour model (Table 2), different cost per kilometer distance travelled parameters 44 
are estimated for the home-school trip and school-home trip. It is found that students are more 45 
sensitive to their cost of the home-school trip. In terms of the travel time, there are not many 46 
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differences between the home-school and school-home commute. The model reveals that 1 
students are more sensitive to home-school commuting distance than school-home commuting 2 
distance. Transit pass and presto-card ownership are tested as a dummy variable in this model. It 3 

is found that if a student has a transit pass or presto-card, the student is more inclined to choose 4 
transit modes (e.g., local transit, park and ride, kiss and ride, and bike and ride).  5 
 6 
Household structure seems to influence tour-based mode choice of the student. Presence of 7 
dependent children seems to increase the attractiveness of motorized modes, e.g. auto drive, auto 8 

passenger, park and ride, and kiss and ride. It is found that female students who commute to 9 
downtown campuses are less inclined to take public transit with walk access in comparison do 10 
the male students. Females are more likely to choose bike, park and ride, and kiss and ride in 11 
their commuting mode choice. In contrast, females who commute to suburban campuses are less 12 

inclined to bike to school which is intuitive, since the suburban areas don’t have sufficient bike 13 
infrastructure. This lack of biking infrastructure pushes the female students to take an auto drive 14 
and auto passenger modes.  15 

 16 

   17 
FIGURE 1: HDDC Modelling Framework  18 

 19 

It is also found that females who commute to suburban campuses are less inclined to choose 20 

transit with walk access as a commuting mode. Poor accessibility to transit and low transit 21 
frequency may be the reason behind this negativity to transit. The model result also shows that 22 
students who commute home-school are more inclined to choose the park and ride in comparison 23 
to bike and ride. In fact, bike and ride are not allowed by the Toronto Transit Commission (TTC) 24 
during the morning peak period, which influences people to choose other modes. It is found that 25 

students are highly sensitive to the access distance to the subway. If the access distance to the 26 
subway is higher students are less likely to choose public transit as their commuting mode.  27 
 28 
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In this model, the future expectation of mode choice is parameterized as a function of the number 1 
of cars per number of household members. This parameter is highly significant and it has a high 2 
magnitude, which reveals that there is a higher correlation between the future modes of local 3 

transit with walk access and kiss and ride. For example, there are four possible modes for the 4 
second trip, while the first trip is made by local transit with walk access, such as auto passenger, 5 
local transit with walk access, kiss and ride, and walk. This result reveals the strong correlation 6 
among those four modes. The future expectations have 71.3% weight factor for local transit with 7 
walk access alternative which is very high. This means the four above mentioned future modes 8 

occupy a significant portion of the utility. On the other hand, for kiss and ride the future 9 
expectation have only 10.8% weight factor, which suggests that three future modes (auto 10 
passenger, local transit and kiss and ride) occupy a negligible portion of the future utility. Due to 11 
identification restriction, the parameters for the function of the future dependence of auto-12 

passenger and walk are kept constant. 13 

 14 
In the three-trip-tour model (Table 3), it is found that unlike the two-trip-tour model, students 15 

perceive cost as cost per distance has a diminishing rate of return (logarithmic). In fact, students 16 
are more sensitive to the cost of auto drive and auto passenger mode of the last trip. Monthly 17 

transit pass users in Toronto need to pay flat monthly fee. As such, they don’t perceive transit 18 
fare for every trip. In this model, the transit cost variable is estimated for those who don’t own a 19 

transit pass. It is found that students are highly sensitive in their second trip, which is more likely 20 
a non-home return trip. Based on a pair-t test value we estimated a generic travel time parameter 21 
for all trips for the same mode. We estimated auto drive and transit travel time parameters 22 

separately and it is found that for all trips students are more sensitive to transit travel time than 23 
auto drive travel time. It is found that female students travelling downtown are more likely to 24 

choose auto passenger mode. Female students are less likely to choose transit for any part of 25 
their tour.   26 

 27 
The future expectation of mode choice is parameterized as a function of the number of cars per 28 

number of household members. This parameter is found significant and it has a high magnitude. 29 
This essentially suggests that the future probable mode alternatives are highly correlated. It is 30 
found that the future expectations have 22.9% weight factor for auto passenger and 31.6% for 31 

walk mode. The future expectations have 81.5% weight factor for local transit with walk access. 32 
As such, like two-trip-tour local transit with walk access occupy a large portion of the utility. 33 

The weight factor for the transit-transit and walk-walk is found as 34%. In the decay equation, 34 
the constant was found to be insignificant. As such the future expectation for these two mode 35 
combinations (transit-transit, and walk-walk) are the same.   36 
 37 

Figure 2 shows the validation results of the two-trip-tours and three-trip-tours. The 80% 38 

randomly selected sample is used for the model estimation and the rest of the 20% is used for 39 

validation. Figure 2(a) shows the validation result for the two-trip-tour and figure 2(b) shows the 40 

validation results of the three-trip-tour. In both cases, the predicted mode shares are very close to 41 

the observed mode share, which states that the model is capable of accurately replicating the 42 

students’ tour-based mode choice context. By using the conditional probability, we also 43 

calculated the probability of each mode at every trip level. Validation results of the two trips of 44 

the two-trip-tour are shown in Figures 2(c) and 2(d). For all trips the observed and predicted 45 

probabilities are very similar. Validation results of every trips of the three-trip-tour are shown in 46 
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Figures 2(e), 2(f), and 2(g). For all three trips the predicted mode shares are very close to the 1 

observed mode share, which essentially suggests that this HDDC model can accurately predict 2 

every trip within the tour as well. 3 

TABLE 2.  HDDC  tour-based mode choice model (two trips) 4 
Number of observation  1922 

Rho squared against null model 0.51 

Rho squared against constant only model 0.12 

 Parameters Mode Estimates t-stat 

Alternative Specific 

Constant (ASC): 

Home to School 

Auto drive Auto drive 0.880 2.927 

Auto passenger Auto passenger -1.250 -4.444 

Local transit walk 

Access 

Local transit walk access 0.000 ---- 

Park and ride Park and ride -1.286 -3.590 

Kiss and ride Kiss and ride -0.500 -1.986 

Bike and ride Bike and ride -3.158 -6.254 

Walk Walk 3.265 4.991 

Bike Bike 3.664 5.351 

ASC: School to home 

when morning mode 

is auto passenger 

Local transit walk 

access 

Local transit walk access -0.101 -0.206 

Kiss and ride Kiss and ride -3.272 -5.789 

Walk Walk -1.264 -1.466 

ASC: School to home 

when morning mode 

is local transit walk 

access 

Local transit walk 

access 

Local transit walk access 3.643 6.754 

Kiss and ride Kiss and ride -0.362 -0.750 

Walk Walk 2.083 2.936 

ASC: School to home 

when morning mode 

is kiss and ride 

Local transit walk 

access 

Local transit walk access 2.673 3.795 

Kiss and Ride Kiss and Ride 2.403 4.107 

ASC: School to home 

when morning mode 

is kiss and ride 

 

Local transit walk 

access 

Local transit walk access -3.165 -3.410 

Home to school Cost per km distance 

travelled 

All motorized modes -1.553 -3.184 

School to home Cost per km distance 

travelled 

All motorized modes -0.726 -1.129 

Home to school  

Travel Time 

Auto drive and auto passenger -0.017 -2.960 

 Local transit, park and ride, kiss and ride, 

bike and ride 

-0.002 -0.642 

School to home  

Travel Time 

Auto drive -0.017 -2.96 

Auto passenger, local transit, park and ride, 

kiss and ride, bike and ride 

-0.004 -0.654 

Home to school Logarithm of distance Walk and bike -1.712 -2.592 

School to home Logarithm of distance Walk and bike -0.227 -0.355 

Home to school Transit pass 

ownership 

Local transit, park and ride, kiss and ride, 

bike and ride 

1.380 10.958 

School to home Transit pass 

ownership 

Local transit, park and ride, kiss and ride, 

bike and ride 

1.005 4.118 

Home to school Presto card ownership 

dummy 

Local transit, park and ride, kiss and ride, 

bike and ride 

0.789 4.853 

School to home Presto card ownership 

dummy 

Park and ride, kiss and ride, bike and ride 0.749 3.777 

Home to school Number of dependent 

children 

Auto drive and auto passenger, park and 

ride, kiss and ride 

0.499 1.547 
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Home to school Female students: 

Commute to 

downtown campus 

Local transit walk access 0.871 4.09 

Park and ride 1.292 3.688 

Kiss and ride 1.282 4.706 

Bike 0.9354 2.476 

School to home Female students: 

Commute to 

downtown campus 

Auto passenger (morning mode local transit 

walk access) 

-0.562 -0.971 

Local transit walk access (morning mode 

kiss and ride) 

-0.677 -2.132 

Home to school Female students: 

Commute to suburban 

campus 

Local transit walk access -0.534 -3.016 

Park and ride -0.413 -1.116 

Kiss and ride -0.708 -2.606 

Walk -2.865 -5.3 

Bike -1.979 -3.998 

School to home Female students: 

Commute to suburban 

campus 

Local transit walk access (morning mode 

auto passenger) 

-1.206 -2.748 

Auto passenger (morning mode local transit 

walk access) 

1.113 2.86 

Local transit walk access (morning mode 

walk) 

2.741 2.212 

Home to school Age between 18 to 22 Park and ride 2.741 -1.873 

Bike and ride -0.487 -1.46 

Home to school Age between 22 to 25 Walk -1.229 1.824 

Bike 1.198 1.755 

School to home The distance in 

kilometers to the 

nearest rail stop from 

home 

Afternoon mode local transit walk access 

(morning modes auto passenger, local 

transit with walk access, kiss and ride, and 

walk) 

-0.094 -1.354 

School to home The distance in 

kilometers to the 

nearest subway station 

from home 

Afternoon mode local transit walk access 

(morning modes auto passenger, local 

transit with walk access, kiss and ride ,and  

walk) 

-0.049 -2.347 

Coefficient of 

function of future 

dependence 

Cars per household 

members 

Local transit with walk access, kiss and ride 6.649 6.204 

Constants Local transit walk access -3.129 -4.607 

 1 
TABLE 3. HDDC tour-based mode choice model (three trips) 2 
Number of observation 1555 

Rho squared against null model 0.400 

Rho squared against constant only model 0.104 

 Parameters Mode Estimates t-stat 

ASC home to school Auto drive Auto drive -0.519 -2.865 

Auto Passenger Auto passenger -2.518 -9.797 

Local transit walk access Local transit walk access -1.804 -8.921 

Walk Walk 0.000 ---- 

Bike Bike 0.659 3.798 

ASC school to home when 

morning mode is auto 

passenger 

Auto passenger Auto passenger 1.420 3.921 

ASC school to home when 

morning mode is local transit 

Auto passenger Auto passenger -2.673 -7.656 

Walk Walk 1.448 0.297 

ASC school to home when 

morning mode is walk 

Walk Walk 3.984 11.072 

ASC school to home when 

first two morning mode is 

Auto passenger Auto passenger -0.947 -1.985 

Walk Walk 3.771 6.270 
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local transit walk access 

ASC school to home when 

morning mode is Local 

transit and Walk 

Walk Walk 4.930 6.693 

ASC school to home when 

morning mode is walk and 

Walk 

Local Transit Walk 

Access 

Local Transit Walk 

Access 

-6.510 -10.591 

First two trips Cost per km logarithmic 

distance travelled 

Auto drive and auto 

passenger 

-0.007 -0.443 

Third trip Cost per km logarithmic 

distance travelled 

Auto drive and auto 

passenger 

-0.150 -0.756 

First trip Cost per km logarithmic 

distance travelled 

Local transit walk access -0.149 -2.660 

Second trip Cost per km logarithmic 

distance travelled 

Local transit walk access -0.624 -0.473 

Third Trip Cost per km logarithmic 

distance travelled 

Local transit walk access -0.022 -0.090 

All trips Travel time Auto drive -0.313 -1.394 

All trips Travel time Auto passenger and 

local transit walk access 

-1.008 -3.264 

First trip Logarithm of distance Walk and bike -0.267 -8.176 

Second trip Logarithm of distance Walk and bike -0.612 -8.918 

Third trip Logarithm of distance Walk and bike -2.617 1.577 

Second trip Transit pass ownership 

dummy (1=yes, 0=no) 

Local transit walk access 0.328 1.249 

Third trip Local transit walk access 0.757 1.577 

 

First trip 

Female students: 

Commute to downtown 

campus 

Auto passenger 1.130 4.76 

Local transit walk access 0.203 1.219 

First trip Female students: 

Commute to suburban 

campus 

Auto drive -0.286 -1.227 

Local transit walk access -0.279 -1.284 

First trip auto passenger 

second local transit walk 

access 

Female students: 

Commute to suburban 

campus 

Local transit walk access -1.284 -1.089 

Coefficient of function of 

future dependence trip one 

Number of car per 

number of household 

members 

Auto passenger, Local 

transit walk access, walk 

4.847 3.283 

Constants Auto passenger 0.521 0.539 

Constants Local transit walk access -3.133 -3.232 

Coefficient of function of 

future dependence trip two 

Number of car per 

number of household 

members 

Local transit walk access 

- local transit walk 

access, walk-walk 

3.676 1.537 

 1 

 2 

 3 

 4 
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                  (a ) Validation of tours (two trips) (n=446)                                                   (b) Validation of tours (three trips) (n=422) 

 
        (c) Trip one (two trip tour) (n=446)                                            (d) Trip two (two trip tour) (n=446) 

 
  (e) Trip one (three trip tour) (n=422)                    (f) Trip two (three trip tour) (n=422)            (f) Trip three (three trip tour) (n=422)  

FIGURE 2. Validation Results of Trips and Tours  
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6. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE STUDIES 1 
 2 

This paper presents a closed-form tour-based mode choice modelling framework, which is based 3 

on a heteroskedastic dynamic discrete choice (HDDC) model approach. This close form HDDC 4 
model can capture behavioural dynamics by considering future expectation of modes and 5 
corresponding discount factor. The empirical model presented in this paper incorporates a wide 6 
range of personal, household, transportation level-of-service, socioeconomic and land-use 7 
attributes. The validation result shows that the model is capable of accurately capturing the tour-8 

based mode choice phenomena. The research presented in this paper has a contribution in 9 
enhancing our understanding of the tour-based mode choice model, which can be plugged into 10 
any econometric ABM framework, such as CUSTOM (Habib et al 2017). From the perspective 11 
of methodological contribution, this paper proposes a simple closed form HDDC modelling 12 

framework, which can be potentially applied for policy testing and welfare analysis.  13 
 14 
The empirical model is estimated for two-trip and three-trip tours. It is found that post-secondary 15 

students are highly sensitive to their cost of the first trip. In terms of the travel time, there are no 16 
significance differences between the home-school and school-home commute. It is found that 17 

having dependent children in the household forces them to choose auto-drive, auto-passenger, 18 
park and ride, and kiss and ride. Interestingly, female students commuting pattern is very 19 

different than the male students. It is found that they are less likely to choose public transit and 20 
bike for commuting to school if their campus is in a suburban area. This essentially suggests the 21 
importance of bicycling infrastructure in the suburban corridor. In addition, the bike and ride 22 

mode is not allowed in the peak hour. However, it may be an excellent policy to allow students 23 
only to take their bike on transit services during the peak hour. This close form HDDC model 24 

can capture the weight of the expectation of future modes in current utility which reveals 25 
significant behavioural dynamics. The parameterization of the future expectation allows us to 26 

capture the heteroskedasticity. The remaining 20% of the sample is used for validation in this 27 
study. The validation results show that the estimated econometric model in this study can predict 28 

both tours and trips accurately.   29 
 30 
There are few limitations of this study. This study did not estimate mode choices for trips with 31 

four trips or more. As such, the home or work based sub-tours are not modelled in this paper. 32 
However, it is straightforward to use the proposed modelling structure for estimating tours with 33 

four trips or more. Even estimating sub-tours would be much simpler.  34 
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